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In this paper we study the conditions necessary for an autoassociative neural network to store struc-
tured patterns built from a predefined set of smaller configurations, which we can treat as words com-
posed by letters. First, we show that no second-order noniterative local learning rule allows an efficient
storage of words (but interneural couplings of an order at least equal to the number of letters in a word
are neccessary). Besides, for the case of three-letter words, we show that any second-order coupling
leads to frustration when two letters are presented. Then, we derive some properties of a neural network
model based on a generalized high-order Hebb’s rule and coupled subnets, and we show that it solves
efficiently the problem of storage and retrieval of words.

PACS number(s): 87.10.+e

INTRODUCTION

Since the tools of statistical physics were first applied
to the study of models of associative memory in neural
networks [1], particularly making use of techniques such
as those used in spin glasses, remarkable advances have
been made in the determination of general properties like
phase transitions, equilibrium states, and storage capacity
[2,3]. These studies have been very complete for neural
network models with interactions of any order [4,5] and
when storage of noncorrelated patterns is considered.
Analytic studies on the storage of correlated patterns
have also been performed, but in general the correlation
has been very specific, as it is, for example, to assume all
patterns with equal magnetization m, which is imposed
by choosing them from a biased random distribution [3].

The storage and retrieval of structured patterns, that
is, with a correlation defined by the formation of global
patterns (or words) from the combination of partial pat-
terns (or letters) stored in subnets, has been studied previ-
ously for the case of simple second-order interactions
[6,7]. The ubiquity of structured patterns that an organ-
ism needs to memorize when facing the detection of pat-
terns of visual, as well as of an auditory nature, or of any
other kind, makes it challenging to find out which ele-
ments have to be considered in neural network modeling
in order to understand this capacity. It is also important
to improve learning algorithms that make possible the
application of neural networks to a huge amount of prac-
tical problems that involve the information management
made up by signs, as is the case of texts or other struc-
tured signals.

In this paper, we will review the relationship between
the number of letters that make up a word and the order
of the interneural couplings needed for its memorization.
We will also study more extensively a storage algorithm
previously presented that combines interactions of second
and third order [8].

From now on we will use 4;(S) to represent the value
of the local field on the ith neuron (i =1,...,N), with
the state S;=x1, S=(S,...,Sy) being the
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configuration of the network. The evolution of the net-
work will be given by the asynchronous and random ap-
plication of the dynamic rule

S;(t +1)=sgn[h;(S(2))] . (m

In the case of simple interneural couplings or of order 2,
Jij» h;(S) will be assumed to be

N
hi(S)= 3 s, . 2)
i

SIMPLE COUPLINGS AND THEIR LIMITATIONS

A vector VER” with components V;=1 or —1 will
define a letter ¥ in R". A set of letters will be called an
alphabet. If the letters are generated at random, we
would say that the alphabet is random. We define a sub-
net as the subset of neurons that encodes a letter.

In relation to a subnet x with n neurons, using letters
in R”, the alphabet L, is defined as

L,=(L'L> ...L% . ...L™, 3)
where L & is the I, th letter of the L, alphabet. For three
subnets (1, 2, and 3) of n neurons, the alphabets would be
L,, L,, and L;. With these alplllabelts, i} is possible to
generate new elements W'=(L'',L 2,L *)ER*" called
words, with [,=1,...,T,, I,=1,...,T,, and
I;=1,...,T;. The selected words to be stored in a net-
work of 3n neurons are clustered in the set

P={(L", L L)L L% L"), (L, L?L?), -,
@

witha, €(1,...,T,},a,E({1,...,T,},etc.

From P we can build a set of word fragments P,,
(x,y =1,2,3), in such a way that P,, is identically equal
to the set of fragments of one letter of the words of P,
with such a letter in the L, alphabet. If x <y, P, is
identically equal to the set of two-letter fragments from
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words of P, with one letter in the L, alphabet and the
other in the L, alphabet.
Ifx >y, P,= Pyx. So, from P we will have the sets

Pu={(L",L),(L",L"),(L*,L),...}=P,, ,
Piy={(L",L),(L""L"),(L,L®),...}=P;,
Pyu={(L%,L"),(L", L"), (L% L"),...}=Py, ,
Py={L,L",L,..],

5)

Let i, and j, be the i, th neuron of the x subnet and the
Jyth neuron of the y subnet, respectively. Let us define
{Py,} as the set of all the P,, derived from P. We can
build a coupling function J,-x J between the i, and j, neu-

rons:

&i':

xJy

(P} >R, (6)

xy

with &ix iy(ny) equal to the synaptic coupling between

the i, and j, neurons. We can say that such couplings
are of a “regional” class, since they only depend on the
components of the stored letters in the x and y subnets.
For a local learning rule of a noniterative kind, the
synaptic couplings should depend functionally only on
the i, and j, components of the fragments of words in-
cluded in P, (as in the case of Hebb’s rule); then they are
of the é,—x J'y(ny) type, though the reciprocal affirmation is

not generally true.
Let us suppose that all the couplings between the neu-
rons are of the type

Ji s, =i (Py) - )

The dynamics for the i, neuron will follow [according
to (2)] from the following local field:

n n
hix(s)= 2 4‘-xjx(Pxx)ij+ 2 dixjy(ny)Sjy
j.=1 i =1

JxFiy

+ 2 4isz(sz)sz X#"y, xF#z, y7é2 . (8)
J,=1

From the previous equation, it is evident that, if for
different sets P of words we get the same sets ny, we will
have the same dynamics, without the distinction of which
set of words has been stored.

Below we will be interested in sets of three-letter
words, such that the knowledge of any two letters deter-
mines uniquely the complete word (for this to be possible
all words must differ in at least two letters). Sets that
satisfy this condition will be referred to as “‘unambiguous

_
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sets.” The importance of using these sets is that with
them it is possible to study the effect of correlation in the
retrieval of words from presentations with one missing
letter (which we will call “completion of words”). If each
of the alphabets has T letters, the largest unambiguous
set will have T2 words. In any of these largest sets, any
letter will be part of T words and it will appear with each
of the other letters in one word. In what follows, this
type of set will be identified as P¥, with k integer. We
can build several different sets P*. (There are at least T'!
sets, because from any set P* we can generate a different
one through permutations of the letters within one
alphabet —that is, interchanging the labeling of letters in
Eq. (3). For the same reason, for each set it is possible to
find another one of the same type without words in com-
mon.) However, the same sets P,ﬂfv come out from these
different sets P*.

In this way, any learning rule of the type mentioned in
(7) is not appropriate to store three-letter words. Particu-
larly, any noniterative local rule will not work, as, for ex-
ample, Hebb’s rule. The same reasoning and conclusions
could be extended to the storage of p-letter words in rela-
tion to the use of couplings of order less than p using the
appropriate generalizations of the sets of word fragments
(considering fragments with less than p letters) and (7)
(considering interneural couplings of order less than p).

Now we will extend our study to the use of any
second-order coupling, testing always the completion of
stored words. To begin, let us remember that we try to

store words denoted as ”=(LI‘,L12,L13). As men-
tioned previously, we are interested in the retrieval of a
word when we start the dynamics from the same word
with one of its letters with 100% noise. In this case the
retrieval of the complete word depends on the ability of
the neighboring subnets to induce the formation of the
correct letter in the noisy subnet (x). Then, for an
efficient retrieval of the complete word, it should occur
that at ¢ =0 the field on any site of the noisy subnet due
to the neighboring subnets has the same sign as the letter
we expect to retrieve (L *). This condition may be ex-
pressed as

'x/y

n n
3 3ot o
jy=l J,=1

Given that the local field on a given neuron due to activi-
ties of and connections with neurons of a neighboring
subnet does not depend on what happens on other sub-
nets, it is likely that coupling between subnets has a sta-
bilizing effect for some letters and a destabilizing effect
for other letters (given that there are repeated letters).
This will lead to frustration.

As an example, let us analyze the following set of
unambiguous stored words:

P={LILL?),(L L 2L, L L), (L L2 L)y . (10)
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For the case of the completion of stored words, such
that the missing letter be induced in subnet 1, every neu-
ron i; should receive the stabilizing influence of the
neighboring subnets. If we define the field of subnet y on

subnet 1 as &; (L), from (9) we have

(i AL+ JLL >0, (11a)
[fﬂl,z(Laz)+cii1,3(Lb3)}L,.”l‘ >0, (11b)
{é,-l,z(Lbz)+4,~1,3(La3)}L,-l:‘ >0, (11c)
W.-‘,z(Lbz)+fi),3(Lb’)}Li"1‘ >0 (11d)

Assummg that the letters are randomly generated,
L,all = —L "1 for approximately half of the neurons in a

subnet. For these cases, the four inequalities (11) cannot
be satisfied simultaneously.

As a verification of the low efficacy of nets with simple
couplings in the completion of words, we have performed
numerical simulations using an iterative learning algo-
rithm that allows the storage of correlated patterns. We
use the Diederich-Opper algorithm [9]. This algorithm
guarantees the stability condition

IX VY — IX - X
Lix hix(W )‘.Lix 12=1J + 2 ljy Jy
jxsﬁix
+ 2 Jixj,L,-'j e (12)
i =1
with a bound k=1 for r patterns §* (v=1,...,r) with

any correlation (for our case £&*=W?"). The learning rule
is based on an iterative algorithm in which the synaptic
coefficients are updated cyclically according to
Jij—J;j+8J;; with

05 - o
041\
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FIG. 1. Probability of retrieval of a three-letter word when

we start the dynamics from the same word with the first letter
totally noisy. We used nets with a different number of neurons
and simple (second-order) interactions generated through the
Diederich-Opper’s rule.
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=(N—1)"'&&70(1—h;(£))),

this bemg repeated until all patterns satisfy the stability
condition. The final couplings will be of the form

Jy=(N—1)"'3 x"6€7 , (14)

jFi, (13)

where the initial couplings have been chosen to be zero
and Y" is defined as the number of times the pattern £
has modified the J; coupling.

We have carried out a simulation using random three-
letter alphabets, which are used to generate a set P* (pre-
viously defined) of words to store. Given that the set is
unambiguous, the correct letter to which the noisy subnet
should converge is uniquely determined. However, the
fraction of events in which the network converged to the
appropriate letter was lower than § for n large enough
(Fig. 1). In all cases the noiseless subnets kept their states
fixed during the dynamics.

USE OF HIGH-ORDER INTERACTIONS
FOR THE STORAGE OF THREE-LETTER WORDS

Now, in relation to the storage of three-letter words
generated with random alphabets, we will study a noni-
terative local algorithm. This is based upon the general-
ized Hebb rule, and it considers the coupling through in-
teractions of order 3 between neurons of different n-
neuron subnets (N =3n) and interactions of order 2 for
neurons within a subnet.

The dynamics for neuron i,
lowing local field:

will follow from the fol-

n n

h (= 3 I Sith 2 90,0555
Jy =1 i=
JeFi, ;=1

xFy, x¥Fz, yFz, (15)

with A a positive parameter that modulates the intensity
of couplings, which are chosen according to a generaliza-
tion of Hebb’s rule and as a function of the selected
words W to be stored:

J,ij=% SwWW, (16a)

i, (16b)

— 3 v v v
= SWIWIW]

Let us define A., 1,1, as an 1nd1cator of the absence (0) or

presence (1) of the word WV_(L L L ). Then, the
final expression for Eq (15) is
h; (S) ———n 2_1 12 A Ll ,;‘L xS
#t xyz
A& Z e dyo 17
+? Ez 112 IIZ’SLiijijszijz . ( )

1
] 1

We are interested in the capacity to retrieve a word
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when the dynamics is started with one of its letters un-
recognizable and the other two letters correct (which
should determine uniquely the missing one), so we will
store again unambiguous sets P*. Then, Eq. (17) can be
written more explicitly, considering that each letter ap-
pears in T words:

hS=L 3 EL"L"S
3n =1
Jx iy
A & X I
+o3 2_ 12 o LELYLES, S, - a)
=1

Let us assume that the state S of the network is one of

the selected words W*=(L"! Laz,L%). In that case the
local field h,-x(W" ) can be decomposed in a noise term,

which tends to make the word unstable, and a signal
term, which tends to reinforce it. For n >>T, the noise
term has a Gaussian distribution of zero mean and a stan-
dard deviation

(T—1) 172
e ——(T*+2)?) (19)
The signal term is
I=L*(T+M%. (20)

For any nonstored word it will be possible to find one of
the stored ones with which there is a difference of only
one letter. Let us look to a word that has a unique letter
(L *) different from the previous word. The local field
for this nonstored word will have a signal term given by

b b
L*(T+ALL;™ ) 1)
For those sites where both letters are not coincident, the

signal term will destabilize the nondesirable word when
A>T.

1-
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FIG. 2. Probability of retrieval of a word with a noisy letter
as a function of the parameter of intersubnet coupling for nets
with a different total number of neurons and three letter alpha-
bets. The model is based on second-order intrasubnet coupling
and third-order intersubnet coupling.
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FIG. 3. Probability of retrieval of a word with a noisy letter
as a function of the parameter of intersubnet coupling for 60
neuron nets. Each curve refers to the use of alphabets with a
different number T of letters. T2 words, which differ in at least
two letters, are stored. The model is the same as in Fig. 2.

In order for the word W* to be stored, the condition of
local stability must be satisfied:

hi (WHL* >0, (22)

for all neurons in the net.

The probability Q that, after generating the alphabets
randomly, a word W*€E P* satisfies (22) is (neglecting
correlation between sites)

N

® 1 —x2/2
f—lll /"Rdx—‘/i‘l—r e . (23)

Using (19) and (20), it can be shown that Q increases with
N, decreases with T, and that it has a single maximum at
A=T/2.

We have simulated N-neuron networks clustered in
three subnets of n neurons each, with the intention of
storing a set P¥ using T-letter alphabets. We could calcu-
late the probability to retrieve a word from a P* when
one of its letters had 100% noise (completion of words),
for different values of A. The results are shown in Figs. 2
and 3: The curves show an increase in the probability for
increasing N, a decrease with increasing 7, and maxima
in Ay, ,=O(T), not far from the value T/2 predicted
above.

DISCUSSION

We have proved the necessity of including neural in-
teractions of an order higher or equal to the number of
letters of words to be stored when using noniterative local
memorization rules, whether the alphabets are random or
not. The central idea was to fragment the selected words
and to build sets of equal size fragments. If the synaptic
couplings are functions of a set of fragments, when there
is more than one set of words that generate that variety
of fragments, the network loses its selective storage capa-
city. It is easy to verify that for each set of words defined
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as unambiguous, there exists another set of the same size
with no words in common that generates the same frag-
ments.

Besides, we have analyzed the ability of a net on a task
defined as completion of a stored word. Here we were
based upon the idea that we wanted to retrieve a whole
word starting from the same incomplete word with only
one unknown letter. For three-letter words, we have
realized that there is no learning rule with second-order
coupling that can be efficient in the completion of words
from any unambiguous stored set. The reason for this is
that the field from the neighboring subnets on the noisy
subnet may be decomposed into two independent terms,
such that the contribution of any of them to the retrieval
of the noisy letter does not depend on the combination of
letters present. Then, frustration may arise as a result of
the topology of given groups of stored words [Eq. (10)],
and will not depend on the specific model of second-order
couplings used [Egs. (11)]. A similar reasoning may be
applied to the general case of the storage of p-letter
words. In this case, in order to have efficient storage, at
least couplings of order p should be used.

Our conclusions are not in contradiction with the re-
sults obtained by Krey and Poppel [6], who use second-
order couplings to store words with an arbitrary number
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of letters, because they have not considered the storage of
words with repeated letters. . Besides, their more detailed
analysis is restricted to the case of two-letter words.

The method of coupled subnets presented here (which
can be generalized to the storage of words with more
than three letters) allows for a decrease in the computa-
tional cost when including simple interactions instead of
higher-order interactions within the subnets, without de-
creasing the efficiency of the net (as we have observed).
Moreover, with the use of this generalized Hebb rule it is
easy to store a new word, linearly modifying the cou-
plings.

We may ask if a model based on a multilayer per-
ceptron, which uses only second-order couplings, could
be more efficient than an autoassociative network in the
storage and retrieval of words. Studies in this direction
are underway.
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